Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8180, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589431

RESUMEN

N6-methyladenosine (6 mA) is the most common internal modification in eukaryotic mRNA. Mass spectrometry and site-directed mutagenesis, two of the most common conventional approaches, have been shown to be laborious and challenging. In recent years, there has been a rising interest in analyzing RNA sequences to systematically investigate mutated locations. Using novel methods for feature development, the current work aimed to identify 6 mA locations in RNA sequences. Following the generation of these novel features, they were used to train an ensemble of models using methods such as stacking, boosting, and bagging. The trained ensemble models were assessed using an independent test set and k-fold cross validation. When compared to baseline predictors, the suggested model performed better and showed improved ratings across the board for key measures of accuracy.


Asunto(s)
Adenosina , ARN , ARN/genética , ARN Mensajero , Adenosina/genética , Proyectos de Investigación
2.
Plants (Basel) ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38475499

RESUMEN

Our research focuses on addressing the challenge of crop diseases and pest infestations in agriculture by utilizing UAV technology for improved crop monitoring through unmanned aerial vehicles (UAVs) and enhancing the detection and classification of agricultural pests. Traditional approaches often require arduous manual feature extraction or computationally demanding deep learning (DL) techniques. To address this, we introduce an optimized model tailored specifically for UAV-based applications. Our alterations to the YOLOv5s model, which include advanced attention modules, expanded cross-stage partial network (CSP) modules, and refined multiscale feature extraction mechanisms, enable precise pest detection and classification. Inspired by the efficiency and versatility of UAVs, our study strives to revolutionize pest management in sustainable agriculture while also detecting and preventing crop diseases. We conducted rigorous testing on a medium-scale dataset, identifying five agricultural pests, namely ants, grasshoppers, palm weevils, shield bugs, and wasps. Our comprehensive experimental analysis showcases superior performance compared to various YOLOv5 model versions. The proposed model obtained higher performance, with an average precision of 96.0%, an average recall of 93.0%, and a mean average precision (mAP) of 95.0%. Furthermore, the inherent capabilities of UAVs, combined with the YOLOv5s model tested here, could offer a reliable solution for real-time pest detection, demonstrating significant potential to optimize and improve agricultural production within a drone-centric ecosystem.

3.
Sensors (Basel) ; 23(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38005432

RESUMEN

Fire outbreaks continue to cause damage despite the improvements in fire-detection tools and algorithms. As the human population and global warming continue to rise, fires have emerged as a significant worldwide issue. These factors may contribute to the greenhouse effect and climatic changes, among other detrimental consequences. It is still challenging to implement a well-performing and optimized approach, which is sufficiently accurate, and has tractable complexity and a low false alarm rate. A small fire and the identification of a fire from a long distance are also challenges in previously proposed techniques. In this study, we propose a novel hybrid model, called IS-CNN-LSTM, based on convolutional neural networks (CNN) to detect and analyze fire intensity. A total of 21 convolutional layers, 24 rectified linear unit (ReLU) layers, 6 pooling layers, 3 fully connected layers, 2 dropout layers, and a softmax layer are included in the proposed 57-layer CNN model. Our proposed model performs instance segmentation to distinguish between fire and non-fire events. To reduce the intricacy of the proposed model, we also propose a key-frame extraction algorithm. The proposed model uses Internet of Things (IoT) devices to alert the relevant person by calculating the severity of the fire. Our proposed model is tested on a publicly available dataset having fire and normal videos. The achievement of 95.25% classification accuracy, 0.09% false positive rate (FPR), 0.65% false negative rate (FNR), and a prediction time of 0.08 s validates the proposed system.

4.
J Mol Graph Model ; 110: 108074, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34768228

RESUMEN

Methylation is a biochemical process involved in nearly all of the human body functions. Glutamine is considered an indispensable amino acid that is susceptible to methylation via post-translational modification (PTM). Modern research has proved that methylation plays a momentous role in the progression of most types of cancers. Therefore, there is a need for an effective method to predict glutamine sites vulnerable to methylation accurately and inexpensively. The motive of this study is the formulation of an accurate method that could predict such sites with high accuracy. Various computationally intelligent classifiers were employed for their formulation and evaluation. Rigorous validations prove that deep learning performs best as compared to other classifiers. The accuracy (ACC) and the area under the receiver operating curve (AUC) obtained by 10-fold cross-validation was 0.962 and 0.981, while with the jackknife testing, it was 0.968 and 0.980, respectively. From these results, it is concluded that the proposed methodology works sufficiently well for the prediction of methyl-glutamine sites. The webserver's code, developed for the prediction of methyl-glutamine sites, is freely available at https://github.com/s20181080001/WebServer.git. The code can easily be set up by any intermediate-level Python user.


Asunto(s)
Glutamina , Procesamiento Proteico-Postraduccional , Humanos , Metilación
5.
Sci Rep ; 11(1): 12281, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112883

RESUMEN

Cancer is driven by distinctive sorts of changes and basic variations in genes. Recognizing cancer driver genes is basic for accurate oncological analysis. Numerous methodologies to distinguish and identify drivers presently exist, but efficient tools to combine and optimize them on huge datasets are few. Most strategies for prioritizing transformations depend basically on frequency-based criteria. Strategies are required to dependably prioritize organically dynamic driver changes over inert passengers in high-throughput sequencing cancer information sets. This study proposes a model namely PCDG-Pred which works as a utility capable of distinguishing cancer driver and passenger attributes of genes based on sequencing data. Keeping in view the significance of the cancer driver genes an efficient method is proposed to identify the cancer driver genes. Further, various validation techniques are applied at different levels to establish the effectiveness of the model and to obtain metrics like accuracy, Mathew's correlation coefficient, sensitivity, and specificity. The results of the study strongly indicate that the proposed strategy provides a fundamental functional advantage over other existing strategies for cancer driver genes identification. Subsequently, careful experiments exhibit that the accuracy metrics obtained for self-consistency, independent set, and cross-validation tests are 91.08%., 87.26%, and 92.48% respectively.


Asunto(s)
Biomarcadores de Tumor , Biología Computacional/métodos , Genómica/métodos , Aprendizaje Automático , Neoplasias/genética , Oncogenes , Algoritmos , Bases de Datos Genéticas , Humanos , Curva ROC , Reproducibilidad de los Resultados , Máquina de Vectores de Soporte , Navegador Web
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...